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Abstract 

It is shown, that Planck’s Law of radiation can be seen as the Law of Rayleigh-Jeans, 

superposed by a descending soft exponential function. A class of such functions is given. 

 

Introduction 

In the last decade of the 19 th  century three famous physicists (all Nobel Prize winners) 

published formulas of the intensity of radiation in dependence on (absolute) temperature T 

and frequency . 

 

I.  Rayleigh’s and Jeans’ formula was 
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(with the nomenclature after Planck’s publication: k is Boltzmann’s constant, c is speed of 

light). Formula ® gives good correspondence of theory and experience (data) for small values 

of , but wide divergence for great values of . 

 

II. Wien gave the formula  
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with Planck’s constant constant h. This hypothesis gives good correspondence with the data 

for high frequencies , but a bad one for small frequencies. 

 

III. In 1900 Planck finally gave the formula 
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which gives good correspondence with the data for all values of   . 

 

 

 

 

 

 

 



Standardization 

By introducing x= kT/h , we get from (1a) 
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i.e. for fixed T three relative simple functions in the standardized variables x and y (see fig. 

1). 

 

 
 

Formula (1b) is a simple parabolic growing function of x. If you imagine data along the 

“right”, i.e. along Planck’s curve in figure 1, you see, that for smaller values of x the 

ascending trend of the data is well approximated by formula (1b), while for greater values of x 

we have huge overestimation: The descending trend of the data is in no way realized. This 

would cause the so-called “ultraviolet-catastrophe”. 



So a descending trend-term must be superposed to formula (1b) of Rayleigh and Jeans. The 

best-known term is the descending exponential function xe . But the result 
x2

1 exy   yields 

by far too small values of y for all values of x, compared with our imagined data (see figure 

1). So it seems near at hand, to superpose a further ascending term to 1y . The simplest one is 

2y =x. Probably this was Wien’s reasoning too. The final result is formula (2b). This 

hypothesis approximates the “data-points” very well for great values of x, but underestimates 

the data for smaller values of x. 

 

Consequences from the results of Rayleigh-Jeans and Wien 

 

We write formulas (1b) and (2b) in the form 
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We have two boundary conditions for the “right” formula 0

2 yxy  , namely 
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 (see figure 2). 

 

 
 

The most simple and reasonable hypothesis for 0y  is 
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So we have two conditions (4) for the two parameters a and b. 



Because of condition (4a) c cannot be zero; because of (4b) we have b=1. Then because of 

(4a) there must be c=-1. For this write xe as Taylor series. So finally we have  
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i.e. Planck’s Law. 

 

 

Supplement 

 

I will call (6) the inverse of a soft exponential growth function, and accordingly  
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a soft exponential growth function. The name “soft” comes from the fact, that the growth of 

0z  is smaller (softer) than that of xe (see figure 3a). Accordingly the decline of 0y is smaller 

than that of  .xe (figure 3b). 

 

 
 



 
 

Then with xe and 0z we have a class of soft exponential growth functions: 
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and with 1/z a class of inverses (see figures 3 with 0 , 0.25, 0.5, 0.75, 1).  

In figure 1 the curve 
)0(z

1
xy 2


  is plotted (Wien’s first step 1y - as I assume). Further 

steps for  =0.25, 0.5, 0.75, 1 (dotted curves) lead to Planck’s curve. 
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